矩阵可逆的充要条件(哪些矩阵可逆)
生活百科 2022-08-08 08:47www.17kangjie.cn生活百科
在线性代数中,给定一个n阶方阵A,若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。
若方阵A的逆阵存在,则称A为非奇异方阵或可逆方阵。
矩阵可逆的充分必要条件:
AB=E;
A为满秩矩阵(即r(A)=n);
A的特征值全不为0;
A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);
A等价于n阶单位矩阵;
A可表示成初等矩阵的乘积;
齐次线性方程组AX=0 仅有零解;
非齐次线性方程组AX=b 有唯一解;
A的行(列)向量组线性无关;
任一n维向量可由A的行(列)向量组线性表示。
其实以上条件全部是等价的。
上一篇:富贵的成语(富贵什么成语有哪些)
下一篇:五带的划分(五带如何划分?各带有何特点)