矩阵可逆的充要条件(方阵可逆的充分必要条件
生活百科 2022-08-10 12:35www.17kangjie.cn生活百科
矩阵可逆的充分必要条件A非奇异、|A|≠0、A可表示成初等矩阵的乘积、A等价于n阶单位矩阵、r(A)=n、A的列(行)向量权组线性无关等。
矩阵可逆的充分必要条件AB=E;A为满秩矩阵(即r(A)=n);A的特征值全不为0;A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。
A等价于n阶单位矩阵;A可表示成初等矩阵的乘积;齐次线性方程组AX=0 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无关;任一n维向量可由A的行(列)向量组线性表示。

相关定理
(1)逆矩阵的唯一性。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。
(2)n阶方阵A可逆的充分必要条件是r(A)=m。
对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。
推论满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。
扩展资料
矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的.逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
上一篇:富贵的成语(表示富贵的成语)
下一篇:亚铁离子的检验(如何检验亚铁离子是否存在)